123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.inception_resnet_v2."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from nets import inception
- class InceptionTest(tf.test.TestCase):
- def testBuildLogits(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, endpoints = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue('AuxLogits' in endpoints)
- auxlogits = endpoints['AuxLogits']
- self.assertTrue(
- auxlogits.op.name.startswith('InceptionResnetV2/AuxLogits'))
- self.assertListEqual(auxlogits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildWithoutAuxLogits(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, endpoints = inception.inception_resnet_v2(inputs, num_classes,
- create_aux_logits=False)
- self.assertTrue('AuxLogits' not in endpoints)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildNoClasses(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = None
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- net, endpoints = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue('AuxLogits' not in endpoints)
- self.assertTrue('Logits' not in endpoints)
- self.assertTrue(
- net.op.name.startswith('InceptionResnetV2/Logits/AvgPool'))
- self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536])
- def testBuildEndPoints(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue('Logits' in end_points)
- logits = end_points['Logits']
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertTrue('AuxLogits' in end_points)
- aux_logits = end_points['AuxLogits']
- self.assertListEqual(aux_logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['Conv2d_7b_1x1']
- self.assertListEqual(pre_pool.get_shape().as_list(),
- [batch_size, 8, 8, 1536])
- def testBuildBaseNetwork(self):
- batch_size = 5
- height, width = 299, 299
- inputs = tf.random_uniform((batch_size, height, width, 3))
- net, end_points = inception.inception_resnet_v2_base(inputs)
- self.assertTrue(net.op.name.startswith('InceptionResnetV2/Conv2d_7b_1x1'))
- self.assertListEqual(net.get_shape().as_list(),
- [batch_size, 8, 8, 1536])
- expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
- 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
- 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
- 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
- self.assertItemsEqual(end_points.keys(), expected_endpoints)
- def testBuildOnlyUptoFinalEndpoint(self):
- batch_size = 5
- height, width = 299, 299
- endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
- 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
- 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
- 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
- for index, endpoint in enumerate(endpoints):
- with tf.Graph().as_default():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- out_tensor, end_points = inception.inception_resnet_v2_base(
- inputs, final_endpoint=endpoint)
- if endpoint != 'PreAuxLogits':
- self.assertTrue(out_tensor.op.name.startswith(
- 'InceptionResnetV2/' + endpoint))
- self.assertItemsEqual(endpoints[:index+1], end_points)
- def testBuildAndCheckAllEndPointsUptoPreAuxLogits(self):
- batch_size = 5
- height, width = 299, 299
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = inception.inception_resnet_v2_base(
- inputs, final_endpoint='PreAuxLogits')
- endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
- 'Conv2d_2a_3x3': [5, 147, 147, 32],
- 'Conv2d_2b_3x3': [5, 147, 147, 64],
- 'MaxPool_3a_3x3': [5, 73, 73, 64],
- 'Conv2d_3b_1x1': [5, 73, 73, 80],
- 'Conv2d_4a_3x3': [5, 71, 71, 192],
- 'MaxPool_5a_3x3': [5, 35, 35, 192],
- 'Mixed_5b': [5, 35, 35, 320],
- 'Mixed_6a': [5, 17, 17, 1088],
- 'PreAuxLogits': [5, 17, 17, 1088]
- }
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(self):
- batch_size = 5
- height, width = 299, 299
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = inception.inception_resnet_v2_base(
- inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
- endpoints_shapes = {'Conv2d_1a_3x3': [5, 150, 150, 32],
- 'Conv2d_2a_3x3': [5, 150, 150, 32],
- 'Conv2d_2b_3x3': [5, 150, 150, 64],
- 'MaxPool_3a_3x3': [5, 75, 75, 64],
- 'Conv2d_3b_1x1': [5, 75, 75, 80],
- 'Conv2d_4a_3x3': [5, 75, 75, 192],
- 'MaxPool_5a_3x3': [5, 38, 38, 192],
- 'Mixed_5b': [5, 38, 38, 320],
- 'Mixed_6a': [5, 19, 19, 1088],
- 'PreAuxLogits': [5, 19, 19, 1088]
- }
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(self):
- batch_size = 5
- height, width = 299, 299
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = inception.inception_resnet_v2_base(
- inputs, final_endpoint='PreAuxLogits', output_stride=8)
- endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
- 'Conv2d_2a_3x3': [5, 147, 147, 32],
- 'Conv2d_2b_3x3': [5, 147, 147, 64],
- 'MaxPool_3a_3x3': [5, 73, 73, 64],
- 'Conv2d_3b_1x1': [5, 73, 73, 80],
- 'Conv2d_4a_3x3': [5, 71, 71, 192],
- 'MaxPool_5a_3x3': [5, 35, 35, 192],
- 'Mixed_5b': [5, 35, 35, 320],
- 'Mixed_6a': [5, 33, 33, 1088],
- 'PreAuxLogits': [5, 33, 33, 1088]
- }
- self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
- for endpoint_name in endpoints_shapes:
- expected_shape = endpoints_shapes[endpoint_name]
- self.assertTrue(endpoint_name in end_points)
- self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
- expected_shape)
- def testVariablesSetDevice(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- # Force all Variables to reside on the device.
- with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
- inception.inception_resnet_v2(inputs, num_classes)
- with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
- inception.inception_resnet_v2(inputs, num_classes)
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
- self.assertDeviceEqual(v.device, '/cpu:0')
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
- self.assertDeviceEqual(v.device, '/gpu:0')
- def testHalfSizeImages(self):
- batch_size = 5
- height, width = 150, 150
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['Conv2d_7b_1x1']
- self.assertListEqual(pre_pool.get_shape().as_list(),
- [batch_size, 3, 3, 1536])
- def testGlobalPool(self):
- batch_size = 2
- height, width = 400, 600
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['Conv2d_7b_1x1']
- self.assertListEqual(pre_pool.get_shape().as_list(),
- [batch_size, 11, 17, 1536])
- def testGlobalPoolUnknownImageShape(self):
- batch_size = 2
- height, width = 400, 600
- num_classes = 1000
- with self.test_session() as sess:
- inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
- logits, end_points = inception.inception_resnet_v2(
- inputs, num_classes, create_aux_logits=False)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['Conv2d_7b_1x1']
- images = tf.random_uniform((batch_size, height, width, 3))
- sess.run(tf.global_variables_initializer())
- logits_out, pre_pool_out = sess.run([logits, pre_pool],
- {inputs: images.eval()})
- self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
- self.assertTupleEqual(pre_pool_out.shape, (batch_size, 11, 17, 1536))
- def testUnknownBatchSize(self):
- batch_size = 1
- height, width = 299, 299
- num_classes = 1000
- with self.test_session() as sess:
- inputs = tf.placeholder(tf.float32, (None, height, width, 3))
- logits, _ = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [None, num_classes])
- images = tf.random_uniform((batch_size, height, width, 3))
- sess.run(tf.global_variables_initializer())
- output = sess.run(logits, {inputs: images.eval()})
- self.assertEquals(output.shape, (batch_size, num_classes))
- def testEvaluation(self):
- batch_size = 2
- height, width = 299, 299
- num_classes = 1000
- with self.test_session() as sess:
- eval_inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = inception.inception_resnet_v2(eval_inputs,
- num_classes,
- is_training=False)
- predictions = tf.argmax(logits, 1)
- sess.run(tf.global_variables_initializer())
- output = sess.run(predictions)
- self.assertEquals(output.shape, (batch_size,))
- def testTrainEvalWithReuse(self):
- train_batch_size = 5
- eval_batch_size = 2
- height, width = 150, 150
- num_classes = 1000
- with self.test_session() as sess:
- train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
- inception.inception_resnet_v2(train_inputs, num_classes)
- eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
- logits, _ = inception.inception_resnet_v2(eval_inputs,
- num_classes,
- is_training=False,
- reuse=True)
- predictions = tf.argmax(logits, 1)
- sess.run(tf.global_variables_initializer())
- output = sess.run(predictions)
- self.assertEquals(output.shape, (eval_batch_size,))
- if __name__ == '__main__':
- tf.test.main()
|